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Abstract 

Background 

Cell responses to environmental stimuli are usually organized as relatively separate 

responsive gene modules at the molecular level. Identification of responsive gene modules 

rather than individual differentially expressed (DE) genes will provide important information 

about the underlying molecular mechanisms. Most of current methods formulate module 

identification as an optimization problem: find the active sub-networks in the genome-wide 

gene network by maximizing the objective function considering the gene differential 

expression and/or the gene-gene co-expression information. Here we presented a new 

formulation of this task: a group of closely-connected and co-expressed DE genes in the gene 

network are regarded as the signatures of the underlying responsive gene modules; the 

modules can be identified by finding the signatures and then recovering the “missing parts” 

by adding the intermediate genes that connect the DE genes in the gene network. 

Results 

ClustEx, a two-step method based on the new formulation, was developed and applied to 

identify the responsive gene modules of human umbilical vein endothelial cells (HUVECs) in 

inflammation and angiogenesis models by integrating the time-course microarray data and 

genome-wide PPI data. It shows better performance than several available module 

identification tools by testing on the reference responsive gene sets. Gene set analysis of 

KEGG pathways, GO terms and microRNAs (miRNAs) target gene sets further supports the 

ClustEx predictions. 
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Conclusion 

Taking the closely-connected and co-expressed DE genes in the condition-specific gene 

network as the signatures of the underlying responsive gene modules provides a new strategy 

to solve the module identification problem. The identified responsive gene modules of 

HUVECs and the corresponding enriched pathways/miRNAs provide useful resources for 

understanding the inflammatory and angiogenic responses of vascular systems. 
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Background 

Understanding of cell responses to environmental stimuli is one of the central tasks of 

molecular biology. Genome-wide gene expression profiling techniques, such as microarray 

and deep sequencing, are widely used to identify the responsive genes whose expressions are 

significantly changed after the stimulus. But identifying the responsive genes by differential 

expressions does not consider the complex gene-gene interactions or regulation information. 

Increasing evidences suggest that cell responses are usually organized as pathways or 

responsive gene modules consisting of a group of interacted genes at the molecular level [1-4]. 

Identification of the responsive gene modules rather than independent responsive genes can 

provide better understanding of the underlying molecular mechanisms. With the increasing 

content of the gene-gene interaction databases, such as protein-protein interaction (PPI) 

databases and pathway databases, several methods have been developed to identify the 

responsive gene modules by finding an active sub-network in genome-wide gene networks 

(mostly PPI networks) [5-14]. The previous methods usually formulate the module 

identification task as an optimization problem: first, a module score evaluating the 

significance of differential expression [5-10] (a few methods also consider the gene-gene 

co-expression information in the objective function [11, 12]) of any given gene sub-network 

is introduced as the objective function; then heuristic searching or exact computational 

methods (linear programming) are implemented to find the sub-networks optimizing the 

objective function. The obtained sub-networks are regarded as the responsive gene modules 

(see review in [13]). Related methods have been successfully applied for analyzing many 

physiological processes, such as type 2 diabetes [15], immunology [8], breast cancer 
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metastasis [10] and drug response [5]. 

Here we presented a new formulation of the module identification task: a group of 

closely connected and co-expressed differentially expressed (DE) genes in genome-wide gene 

networks are regarded as the signatures of the underlying responsive gene modules at the 

RNA expression level. Our method named ClustEx was designed to find those signatures in 

the first step. Many studies show that the genes which are co-expressed in RNA level and/or 

interacted in protein level tend to involve in the same biological process, and promising new 

discoveries have been found by using the co-expression [16, 17] and/or interaction 

information [18-20]. After getting the clustered DE genes as the signatures, the “missing 

parts” of the responsive gene modules are recovered in the second step by adding the 

intermediate genes, which may not be differentially expressed but are on the paths connecting 

the DE genes in the gene network. 

Human umbilical vein endothelial cells (HUVECs) are widely used as in vitro models to 

study the vascular systems in inflammation and angiogenesis. We collected two time-course 

microarray datasets: one is for tumor necrosis factor alpha (TNF) stimulated HUVECs, an 

inflammation model [21-24], and the other one is for vascular endothelial growth factor A 

(VEGF) stimulated HUVECs, a canonical angiogenesis model [25-28]. Then ClustEx was 

applied to identify the responsive gene modules of TNF/VEGF stimulated HUVECs by 

integrating the time-course microarray data and the genome-wide HPRD PPI data [29-31]. 

Results show that ClustEx has better performances than several available module 

identification tools on the reference responsive gene sets. The enriched KEGG pathways [32], 

microRNA (miRNA) target gene sets [33, 34] and GO terms [35] identified by gene set 
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analysis also support ClustEx predictions. 

Results 

ClustEx overview: identify the responsive gene modules by network-based differentially 

expressed (DE) genes clustering and extending 

ClustEx is a two-step method for identifying the responsive gene modules by combining gene 

expression and interaction information. In the clustering step, average linkage hierarchical 

clustering was used to cluster and partition the DE genes into different gene groups according 

to their distances in gene networks, based on the assumption that a group of closely-connected 

and co-expressed DE genes are the signatures of the underlying responsive gene modules. In 

the extending step, the intermediate genes on the k-shortest paths between the DE genes were 

added to form the final responsive gene modules (Figure 1). The details of ClustEx are 

presented in Methods section. 

Identification of the responsive gene modules of human umbilical vein endothelial cells 

(HUVECs) in inflammation 

ClustEx was applied to identified the responsive gene modules of HUVECs in inflammation 

model using the 0~8h time-course microarray expression profiling data (GSE9055, 0~8h, 25 

time points [36, 37]) and the HPRD genome-wide PPI data [29-31], with the following 

settings: the minimum fold changes of DE genes is 2, the shortest path length is shorter than 

0.8 for clustering and the “k” is 10 for adding the intermediate genes on the k-shortest paths. 

The identified biggest responsive gene module has 284 genes including 130 DE genes (Figure 

2, Additional file 1) and the second has 34 genes including 18 DE genes. The top two 
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modules are very significant according to the edge-based module score measurement defined 

by [11] (z-score = 50.279 for the biggest module; z-score = 9.72 for the second module). 

To validate our predictions, three different TNF reference responsive gene sets were 

collected from 1) NetPath “TNF/NF-kB signaling pathway”, 2) PID/BioCarta/Reactome 

annotated TNF signaling pathways, and 3) PubMed abstracts. We compared our predictions 

with several available module identification tools. The original node-based approach using 

simulated annealing (CytoScape jActiveModules plug-in [7]) and the edge-based heuristic 

searching approach in [11] (the Matlab and Java scripts were obtained by personal contact 

with the authors) did not find any significant module larger than 30 genes using the parameter 

settings described in Method section. The other compared methods included the node-based 

approach using greedy search (jActiveModules), GXNA (Gene eXpression Network Analysis) 

[8], several methods revised from ClustEx and the simple DE gene approach with minimum 

fold change (FoldChange_[fold]) (Figure 3). Generally, ClustEx predictions are better both on 

sensitivity and signal-to-noise ratio (S/N) on the reference responsive gene sets, except that 

FoldChange_2.0 (with minimum fold change 2.0) exhibits much higher sensitivity on the 

literature reference gene set (TNFLitRef). As the cutoff of the hierarchical clustering is 

gradually relaxed (from 0.5 to 1.0), the sensitivity of ClustEx increases but the S/N decreases. 

The other two module identification methods also show higher specificities than 

FoldChange_2.0, which suggests that the interaction data of the gene network provide 

additional information of cell responses at the molecular level. 

Gene set analysis of KEGG pathways, GO biological processes and microRNA (miRNA) 

target genes were conducted to find additional supporting evidence. Sixteen pathways were 



 8

enriched in the biggest responsive gene module identified by ClustEx, including many known 

pathways affected by TNF, such as Apoptosis, Notch signaling pathway, Jak-STAT signaling 

pathway, Toll-like receptor signaling pathway and Cell cycle (Table 1, Additional file 2). 

Years ago, apoptosis in vascular endothelial cells has been reported after TNF stimulus [38, 

39]. Looking at the overlapped genes, it is found that caspase apoptosis cascade (CASP3, 

CASP6, CASP7 and CASP9 in the module) may be activated by TNF. Jak-STAT signaling 

pathway and Toll-like receptor signaling pathway are two signaling pathways activated by 

TNF [40-42]. Our previous study, which used another two micro-array datasets of 

TNF-stimulated vascular endothelial cells, also found that apoptosis, Toll-like receptor 

signaling pathway and Jak-STAT signaling pathway are enriched for the responsive process 

[43]. jActiveModules found eleven enriched pathways, GXNA found five pathways and 

FoldChange_2.0 found nine pathways. The average rank of the pathway enrichments was 

higher for ClustEx (average rank 1.86) than the other three methods (jActiveModules 2.32, 

GXNA 3.18, DE gene approach 2.64) (Table 1). 

For the enriched miRNA target gene sets (the target gene sets are downloaded from the 

TargetScan website [33]): comparing with five for jActiveModules, four for GXNA and six 

for FoldChange_2.0, ClustEx found eight miRNAs, more than the other methods (Table 2, 

Additional file 3). These results suggest that ClustEx captures more signaling and regulatory 

information from the gene expression and interaction data of TNF stimulated HUVECs. In the 

enriched miRNAs, miR-221/222 is a well-studied miRNA which can significantly reduce tube 

formation and migration by directly targeting KIT (c-kit) [44, 45]. In the identified biggest 

TNF responsive gene module, ETS1, IRF2, ESR1 and SOCS3, which are important genes in 
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inflammation and angiogenesis, are also predicted as the targets of miR-221/222. MiR-18 is 

located in a large miRNA cluster miR-17~92, which has been identified as an oncogene [46]. 

It functions as a pro-angiogenic factor by repressing THBS1 (Tsp-1). MiR-18 is also predicted 

to target ESR1, IRF2, KIT, NOTCH2, PAPPA and TNFAIP3 in our study. MiR-145 has 

recently been reported to regulate cell differentiation [47, 48]. A set of inflammatory and/or 

angiogenic genes, including ADAM17, CD40, ETS1, FOXO1, SMAD3 and TLR4, are 

predicted as the targets of miR-145, which suggests that miR-145 may also play important 

role in the two processes. 

We also analyzed the enriched GO terms of the biggest responsive gene module. The 

enriched terms for TNF are mainly divided into three classes: apoptosis, protein kinase 

cascade and I-kB kinase/NF-kB cascade. Apoptosis and I-kB kinase/NF-kB cascade are two 

main programs activated by TNF. These two GO terms are consistent with the enriched 

KEGG pathways. The detail information of the enriched GO terms is documented in 

Additional file 4. 

Identification of the responsive gene modules of HUVECs in angiogenesis 

Angiogenesis is an essential physiological process in vascular systems. ClustEx was applied 

to analyze a time-course microarray dataset of VEGF stimulated HUVECs (GSE10778, 0~6h, 

5 time points [49]), a canonical angiogenesis model [25-28]. The biggest responsive gene 

module has 262 genes, including 106 DE genes (Figure 4, Additional file 1). The z-score of 

the biggest module is 39.81. On the literature reference gene set (VEGFLitRef), 

FoldChange_2.0 achieves highest sensitivity and ClustEx show competitive performance with 
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jActiveModules, while on the reference gene set collected from pathway databases 

(VEGFPathDBRef), ClustEx achieves highest specificity and competitive sensitivity to 

FoldChange_2.0 (Figure 5).  

For the following gene set analysis: thirteen pathways and eight enriched miRNA target 

gene sets were found enriched in the biggest responsive gene module identified by ClustEx; 

nine pathways and eight miRNAs were found for jActiveModules; one pathway and six 

miRNAs were found for GXNA; and three pathways and six miRNAs were found for 

FoldChange_2.0 (Tables 3, Additional file 2 and Table 4, Additional file 3). In the enriched 

pathways, TGF-beta signaling pathway, Cell cycle and Wnt signaling pathway are frequently 

reported to be related to VEGF stimulus [50, 51]. In the enriched miRNAs, miR-125 is 

detectable in HUVECs [52] and miR-200 has been reported to play an important role in 

angiogenesis and tumorigenesis [53]. MiR-132/212, ranked as the first for the VEGF dataset, 

may regulate angiogenesis by targeting EP300, MAP3K3, MAPK1 and MAPK3. The 

enriched GO biological processes are mainly (anti-)apoptosis and RNA/nucleic acid transport 

related terms (Additional file 4), which is consistent with VEGF pro-angiogenesis effect. 

Discussion 

The cross-talk between inflammation and angiogenesis in Notch signaling pathway 

Several studies have shown that endothelial cells are closely related to angiogenesis within an 

inflammatory environment [22, 23]. Notch signaling pathway may play essential role in the 

cross-talk between inflammation and angiogenesis [25, 54-57]. This pathway was found 

enriched both in TNF and VEGF responsive gene modules identified by ClustEx. Several 
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repressing signals of notch signaling pathway were found after TNF stimulus, which can 

promote angiogenesis sprouting with the following VEGF stimulus [25, 54]. Some 

transcription factors in the identified responsive gene modules, such as RELA (NF-kB), YY1 

and SMAD3, which are the direct and highly co-expressed neighbors of the genes in KEGG 

annotated Notch signaling pathway, may also participate in the signaling. 

Limitation of the protein-protein interaction edges 

Some cell adhesion molecules of HUVECs significantly up-regulated in inflammation, such 

as ICAM1, VCAM1 and SELE were not covered in the identified responsive gene modules. 

We manually checked the expression correlations between these genes with their neighbor 

genes and found that the correlations are relatively low. The promoters of the three genes 

contain multiple transcription factor binding sites of the NF-kB complex (NFKB1, RELA), 

which are significantly up-regulated by TNF stimulus and covered in the biggest TNF 

responsive gene module (the annotations of the promoters and the transcription factor binding 

sites are obtain from Transcriptional Regulatory Element Database, TRED [58, 59]). These 

observations suggest that the missed responsive genes are more likely to connect with the 

biggest responsive module by transcriptional regulation rather than protein-protein interaction. 

So the missing edges representing the transcriptional regulations (and other types of 

interactions or regulations) should be added in future studies. 

Conclusions 

Taking the closely-connected and co-expressed differentially expressed (DE) genes in 

condition-specific gene networks as the signatures of the underlying responsive gene modules 
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provides a new strategy to solve the module identification problem. The responsive gene 

modules can be identified by finding the extended sub-networks from groups of clustered DE 

genes. Following this strategy, a two-step method named ClustEx was proposed and applied 

to identify the responsive gene modules of HUVECs within inflammation and angiogenesis. 

ClustEx shows better performances than several available module identification tools on 

reference responsive gene sets. The following gene set analysis of pathways and miRNA 

target genes also support ClustEx predictions. 

Methods 

Time-course microarray and genome-wide protein-protein interaction (PPI) data 

Two time-course datasets were downloaded from NCBI GEO database [60, 61]: GSE9055, 

Affymetrix Human Genome U133 Plus 2.0 Array (U133Plus2.0), HUVECs stimulated with 

10ng/mL TNF, 0-8h, 25 time points [36, 37] and GSE10778, U133A, HUVECs stimulated 

with 100ng/mL VEGF, 0-6h, 5 time points [49]. Original CEL format files were downloaded 

and then processed by dChip [62]. The probe signals were collapsed as gene expression 

signals by the mean value if multiple probes hit the same gene. 

PPI data were downloaded from HPRD (Release 7) [29-31]. Only the genes both in the 

HPRD PPI dataset and the microarray platform were used in this study. 

ClustEx workflow 

1) Identification of the differentially expressed (DE) genes 

First, the maximum fold change (according to non-log-transformed signals) respect to the 
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0h00m signal was calculated for each gene. Then the genes with minimum 2-fold changes 

(either up-regulated or down-regulated) were selected as the DE genes. We found 1421 DE 

genes (15.7%) in the TNF dataset and 709 DE genes (9.36%) in the VEGF dataset. 

2) Clustering step: cluster and partition the DE genes into different groups based on 

their distances in condition-specific gene networks 

Cell responses to environmental stimuli are usually organized as relatively separate 

responsive gene modules. We clustered and partitioned the DE genes into different groups 

based on their interactions and their dynamic expression correlations. Each edge of the gene 

network derived from HPRD PPIs was weighted as  

( ) ( ), ,weight x y cor x y=  

And the distance between two direct-interacting genes was defined as 

( ) ( ) ( ), 1 , 1 , 0distance x y weight x y cor x y= − = − ≥  

The gene-gene distance was defined as the length of the shortest path between the two genes 

in the gene network. The shortest path length between any pair of DE genes was calculated 

using Dijkstra's algorithm. Then average linkage hierarchical clustering was used to cluster 

the DE genes according to the gene-gene distances. Distance cutoff was set to partition the 

DE gene into separate gene groups. 

Hierarchical model analysis (HMA), a basic density-based clustering algorithm, is also 

used to cluster the DE genes. The detail description of this algorithm and the corresponding 

results are presented in (Additional file 5 and 6). 
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3) Clustering step: select the cutoff for the hierarchical clustering of the DE genes 

As observed in previous studies and in our analysis, a big module usually “dominates” the 

responsive process [7, 11]. We traced the size expansion of the biggest DE gene group and the 

increase of the corresponding distance cutoff. The cutoff is selected at the point after which 

the cluster expansion becomes much slower. For the TNF dataset, we observed a sharp turn 

right before 0.8 and the expansion of the cluster is much slower after 0.8 (Figure 6A), so we 

chose 0.8 as the cutoff to generate the DE gene clusters. For the VEGF dataset, a relative turn 

point exists around 0.14~0.15. We ran ClustEx with cutoff 0.14, 0.145, 0.15 and 0.155. The 

sizes of the final responsive gene modules are similar: 244, 247, 262 and 265, respectively. So 

we simply chose the cutoff at 0.15 (Figure 6B). 

4) Extending step: reconstruct the responsive gene modules by adding the intermediate 

genes connecting the DE genes 

Microarray can detect the changes at the RNA expression level, but will miss many activity 

changes at protein level. It is assumed that the genes which are connecting the DE genes in 

the gene network are also important for cell responses. The final responsive gene modules 

were constructed by adding the intermediate genes to the DE gene groups found in the 

clustering step. 

To reduce the false positives on the long paths and the huge computational cost for 

finding the k-shortest paths between all pairs of nodes in the whole gene network, the 

extending step was implemented as follows: first, the genes on the shortest paths between the 

DE genes were added to form a connected sub-network; then the sub-network was extended 
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by one step in the whole gene network (it means the search space of the extending is limited 

in the DE genes, the genes on DE genes’ shortest paths and the genes directly interacted with 

the former two kinds of genes.); finally, the responsive gene modules were identified by 

extracting all the genes and edges on the 10-shortest paths between all the pairs of the DE 

genes in the extended sub-network. The k-shortest paths were calculated using an 

implementation of Yen’s algorithm (k-shortest paths mean the shortest k [1
st
-k

th
 shortest] paths 

connecting the gene pair in the weighted network) [63]. Necessary changes were made in the 

source codes. 

5) Extending step: select “k” for the adding the genes on the k-shortest paths 

Similar to find the cutoff of the hierarchical clustering, we traced the size expansion of the 

biggest responsive gene module by increasing “k” from 1 to 20. No obvious cutoff was 

observed as in the curve of the size of the biggest DE gene cluster in the previous section. We 

empirically selected “k” as 10: the increased module size from 0 to 10 is more than 5 times as 

the increased size from 10 to 20 (for TNF dataset, 154/28 = 5.5; for VEGF dataset, 156/16 = 

9.75) (Figure 7). The identified responsive gene modules are stable around the “k = 10”: as 

the “k” reduces from 10 to 8, the size of the module is only reduced by 2.8% for the TNF 

dataset and by 0.8% for the VEGF dataset; as the “k” increases from 10 to 12, the size of the 

module is only increased by 2.1% for the TNF dataset and by 1.9% for the VEGF dataset. 

These small changes do little impact for the following analysis. 

6) Evaluate the statistical significance of the responsive gene modules 

The evaluation method described in [11] was used to estimate the statistical significance of 
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the identified responsive gene modules. First, the score for the edge connecting gene x and 

gene y was defined as 

( ) ( ) ( ) ( ), ,escore x y sd x sd y cor x y=  

sd(x) and sd(y) are the standard derivations of the expressions of gene x and y in microarray 

datasets, respectively. |cor(x, y)| is the Pearson correlation of gene x and y (absolute value). 

The module score (mscore) was calculated by summing the escores of all edges in the module 

( ) ( )
( ) ( ),

,
x y edges G

mscore G escore x y
∈

= ∑
 

Then we randomly sampled the same number of edges in the whole network and calculated 

the shuffled module score 

( ) ( )
( ) ( )', ' '

' ', '
x y edges G

mscore G escore x y
∈

= ∑
 

The random sampling processes were repeated 10,000 times and the statistical significance 

was evaluated by z-score: 

( ) ( )( )
( )

'

( ' )

mscore G mean mscore G
z

sd mscore G

−
=  

7) ClustEx package for download 

To facilitate the usage of ClustEx, we prepared the ClustEx package including two network 

distance calculation programs (modified Yen source codes are included in the package), 

several Perl scripts and the installation script. Users can download the package via our 

website: (http://bioinfo.au.tsinghua.edu.cn/member/~gujin/clustex/) or via email: 

(jgu@tsinghua.edu.cn). Current release requires huge computational cost, especially long 
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waiting time. We will develop future version to solve this problem. We will also include the 

scripts to help determine the parameters of ClustEx (hierarchical clustering cutoff and “k” for 

the k-shortest path) in the future version. 

Evaluation of computational methods’ performances by reference responsive gene sets 

We prepared several reference responsive gene sets to evaluate the performances of the 

computational approaches: 

TNFLitRef (TNF literature reference gene set), 376 genes. The gene symbols were 

analyzed and extracted from the 998 PubMed abstracts (before 2009/11/10) using keyword 

(TNF AND HUVEC*) by Agilent Literature Search (v2.71), a CytoScape plug-in. Then gene 

symbols were converted to Entrez Gene IDs by IDConverter [64] (a few genes not transferred 

by IDConverter were manually converted). The genes not covered by HPRD or Affy 

U133Plus2.0 array were removed. TNFNetPathRef (TNF NetPath pathway reference gene 

set), 184 genes. All Entrez Gene IDs were derived from “TNF signaling pathway” curated in 

NetPath database [65]. The genes not covered by HPRD or Affy U133Plus2.0 platform were 

removed. TNFPathDBRef (TNF pathway database reference gene set), 63 genes. Entrez 

Gene IDs of the reference genes were derived from following TNF related signaling pathways: 

BioCarta “TNF/stress related signaling”, “TNFR1 signaling pathway and TNFR2 signaling 

pathway” [66], PID “TNF receptor signaling pathway” [67] and Reactome “TNF signaling” 

[68]. The genes not covered by HPRD or Affy U133Plus2.0 array were removed. 

VEGFLitRef (VEGF literature reference gene set), 342 genes. The gene symbols were 

analyzed and extracted from the 871 PubMed abstracts (before 2009/11/10) using keyword 
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(VEGF AND HUVEC*) by Agilent Literature Search (v2.71). Then gene symbols were 

converted to Entrez Gene IDs by IDConverter. The genes not covered by HPRD or Affy 

U133A array were removed. VEGFPathDBRef (VEGF pathway database reference gene set), 

109 genes. Entrez Gene IDs of the reference genes were derived from BioCarta “VEGF, 

Hypoxia, and Angiogenesis”, PID “Signaling events mediated by VEGFR1 and VEGFR2” 

and KEGG “VEGF signaling pathway” [32]. The genes not covered by HPRD or Affy U133A 

array were removed. 

We compared the gene lists between the identified responsive gene modules and the 

reference gene sets. The sensitivity is defined as the percentage of genes in the reference gene 

set covered by the identified responsive gene module: 

{ } { }( )
{ }

#

#

module genes reference genes
sensitivity

reference genes

∩
=  

The signal-to-noise ratio (S/N) was used to evaluate the significance of overlapping. The 

signal is defined as the number of overlapped genes between the identified responsive gene 

module and the reference gene set; the noise is defined as the mean of the numbers of the 

overlapped genes between control modules and the reference gene set: 10,000 control gene 

sets each with the same size as the studied module were randomly sampling from the 

complete gene list and then S/N is calculated as the following definition: 

{ } { }( )
{ } { }( )( )

#
/

#

module genes reference genes
S N

mean control module genes reference genes

∩
=

∩
 

Comparison with other methods 

jActiveModules with simulated annealing searching [7] and edge-base scoring method with 
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simulated annealing searching (Matlab + Java codes were obtained by personal 

communication) [11] were run multiple times with different starting seeds and parameters, but 

neither one reported significant modules larger than 30 genes. Heuristic searching methods 

can find the (sub-)optimal results for the objective function if the iterations are long enough. 

But when the search space is bigger or the structure of the search space is irregular, the 

searching process is very slow. Due to the high computational cost, we may not be able to 

find the optimal parameter settings of these programs. Their predictions were not included in 

the comparison. For jActiveModules with greedy search, the top-scoring module was used in 

the comparison. EDGE software [69] was used to calculate the p-values evaluating the 

significances of gene expression changes in time-course microarray datasets, which were 

required as jActiveModules inputs. For Gene eXpression Network Analysis (GXNA) [8], the 

pre-defined sizes of the responsive gene modules were set as 300/250 genes for TNF/VEGF 

datasets. To fulfill GXNA input requirements, the 0h00m signals were repeated 24/4 times as 

control samples and the signals in the other 24/4 time points were used as case samples. Also 

due to the high computational cost, we may not be able to find the optimal parameter settings 

of these programs. The detail settings about the compared program were as follows: 

a) The edge-based scoring method. The Matlab and Java codes are obtained by email. 

The package was run as the following parameters: simulated annealing start 

temperature 1 (default), end temperature 0.01 (default) / 0.001 and iteration 30000 

(default) / 10000. The package was run multiple times with different random seeds. 

The produced biggest gene modules are no larger than 20 genes for the TNF dataset. 

Similar results are observed for the VEGF dataset. 
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b) jActiveModules with simulated annealing. This Cytoscape plug-in was run with the 

default parameter except changing the iteration to 100,000 (the parameter used in the 

original paper) and switching the Hubfinding On/Off. We ran multiple times with 

different random seeds. No significant modules were produced by the plug-in. 

c) jActiveModules with greedy search. The program was run with its default parameter 

(“search depth” = 1 and “max depth from start node” = 2). The produced modules with 

the highest scores were used in the comparisons. 

d) GXNA. The program was run with “-depth 300” for the TNF dataset (./gxna -name 

[tnf] -mapFile [tnf].ann -edgeFile [tnf].gra -algoType 1 -version 001 -depth 300) and 

“-depth 250” for the VEGF dataset (./gxna -name [vegf] -mapFile [vegf].ann -edgeFile 

[vegf].gra -algoType 1 -version 001 -depth 250). 

Gene set analysis of KEGG pathways, GO terms and miRNA target gene sets 

Meet/Min values, commonly used to evaluate the overlapping of the two gene sets [70], were 

adapted to calculate the pathway/GO enrichments in the responsive gene modules. The GO 

terms with smaller than 50 genes and larger than 500 genes were removed. Larger Meet/Min 

values mean higher enrichments: 

{ } { }( )
{ } { }( )

#
/

min # , #

pathway genes module genes
Meet Min

pathway genes module genes

∩
=  

Degree preserving permutation methods were used to generate 1,000 random pathways and 

the z-scores of Meet/Min were calculated as: 
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( ) ( )( )
( )( )

/ / '

/ '

Meet Min pathway mean Meet Min pathway
z

sd Meet Min pathway

−
=  

The pathways with z-score > 3.0 were reported as enriched in the corresponding responsive 

gene modules. 

Based on the assumption that the genes with higher expression changes, higher 

correlation with their neighbors and higher connection degrees would be more important, the 

network-based gene importance scores (gscores) were proposed to evaluate the importance of 

gene x in the responsive gene module: 

( ) ( )
( ){ }

,
y neighbour x

gscore sd x cor x y
∈

 
=   

 
∑  

To evaluate the enrichments of miRNA target gene sets, firstly the overlapped genes were 

found between the responsive gene modules and the miRNA target gene sets. Then the 

enrichments were calculated as the sums of the gscores of the overlapped target genes: 

( )
{ }x overlapped genes

tscore gscore x
∈

= ∑  

Degree preserving permutation methods were used to generate 1,000 random miRNA target 

gene sets and the z-scores of tscores were calculated as above. A looser cutoff was used to 

select enriched miRNA target gene sets (z-score > 2.0). TargetScan (v5.1) [33, 34] miRNA 

target predictions were used in this analysis. 
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Figure legends 

Figure 1. The ClustEx workflow. In the clustering step, DE genes were clustered and 

partitioned into relatively separate gene groups. In the extending step, intermediate genes on 

the k-shortest paths of each group of clustered DE gene were added to form the final 

responsive gene modules. 

Figure 2. The biggest responsive gene module of TNF stimulated HUVECs. The “red” circles 

indicate the clustered DE genes. The “pink” circles indicate the intermediate genes on the 

shortest paths of the DE genes. The “light blue” circles indicate the intermediate genes on the 

2-10 shortest paths of the DE genes. 

Figure 3. The sensitivities and signal-to-noise ratios (S/N) for different computational 

methods on the TNF stimulated HUVECs dataset. “ClustEx_0.5/0.8/1.0” means the biggest 

module identified by ClustEx with distance cutoff 0.5/0.8/1.0, including 84/284/376 genes, 

respectively; “ClustShortest_0.8” means the biggest module identified by ClustEx only 

adding the intermediate genes on the shortest paths instead of the 10-shortest paths, including 

167 genes; “Clust_0.8” means the biggest DE gene group identified by the clustering step, 

including 130 genes; “jActiveModules” means the top module identified by jActiveModules 

with greedy search [7], including 404 genes; “GXNA” means the highest scoring module 

identified by GXNA [8], including 300 genes; “FoldChange_2.0/4.0” means the DE genes 

with fold changes larger than 2.0/4.0, including 1421/260 genes. 

Figure 4. The biggest responsive gene module of VEGF stimulated HUVECs. The “red” 

circles indicate the clustered DE genes. The “pink” circles indicate the intermediate genes on 
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the shortest paths of the DE genes. The “light blue” circles indicate the intermediate genes on 

the 2-10 shortest paths of the DE genes. 

Figure 5. The sensitivities and signal-to-noise ratios (S/N) for different computational 

methods on the VEGF stimulated HUVECs dataset. “ClustEx” means the biggest module 

identified by ClustEx, including 262 genes; “jActiveModules” means the top module 

identified by jActiveModules with greedy search [7], including 195 genes; “GXNA” means 

the highest scoring module identified by GXNA [8], including 250 genes; “FoldChange_2.0” 

means the DE genes with fold changes larger than 2.0, including 709 genes. 

Figure 6. The relationship between the hierarchical clustering cutoff and the size of the 

corresponding biggest DE gene group. 

Figure 7. The relationship between “k” and the size of the corresponding biggest responsive 

gene module. 
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Table 1. The enriched pathways of the responsive gene modules of TNF stimulated HUVECs 

identified by different methods. 

Pathway 

ClustEx 

Meet/Min 

(z-score) 

jActiveModules 

Meet/Min 

(z-score) 

GXNA 

Meet/Min 

(z-score) 

FoldChange_2.0 

Meet/Min 

(z-score) 

Apoptosis 0.29(6.14), 1
a
 0.22(4.00), 3 0.15(3.70), 4 0.28(4.31), 2 

Adipocytokine signaling 

pathway 

0.27(4.88), 1 0.15(1.39), 4 0.13(2.32), 3 0.26(3.16), 2 

Prostate cancer 0.24(4.83), 2 0.27(5.52), 1 0.10(1.58), 3 0.16(0.96), 4 

Notch signaling pathway 0.33(4.78), 2 0.18(1.58), 3 0.05(-0.24), 4 0.38(4.80), 1 

Jak-STAT signaling 

pathway 

0.20(4.75), 1 0.09(0.09), 4 0.07(0.83), 3 0.21(3.38), 2 

Toll-like receptor signaling 

pathway 

0.23(4.68), 2 0.20(3.49), 3 0.11(2.21), 4 0.31(5.16), 1 

Small cell lung cancer 0.24(4.58), 1 0.21(3.78), 2 0.14(3.42), 3 0.21(2.57), 4 

Huntington's disease 0.32(4.12), 2 0.36(4.57), 1 0.11(1.11), 3 0.14(0.25), 4 

Chronic myeloid leukemia 0.23(4.05), 3 0.27(5.55), 1 0.19(4.91), 2 0.26(3.71), 4 

Acute myeloid leukemia 0.26(4.04), 1 0.20(2.75), 2 0.13(2.32), 3 0.22(2.21), 4 

Pancreatic cancer 0.23(4.02), 2 0.23(4.28), 1 0.10(1.40), 4 0.19(1.83), 3 

Cell cycle 0.19(3.52), 2 0.23(5.53), 1 0.07(0.73), 4 0.15(0.74), 3 

Neurodegenerative 

Diseases 

0.28(3.49), 1 0.22(2.49), 2 0.03(-0.85), 4 0.17(0.73), 3 

Epithelial cell signaling in 

Helicobacter pylori 

infection 

0.23(3.40), 2 0.19(2.59), 4 0.16(3.18), 3 0.28(3.49), 1 

Dorso-ventral axis 

formation 

0.29(3.17), 1 0.25(2.61), 2 0.08(0.45), 4 0.25(1.85), 3 

B cell receptor signaling 

pathway 

0.21(3.06), 1 0.15(1.35), 4 0.11(1.82), 3 0.23(2.57), 2 

Bladder cancer 0.23(2.85), 2 0.26(3.47), 1 0.13(1.70), 4 0.26(2.60), 3 

T cell receptor signaling 

pathway 

0.18(2.85), 3 0.09(-0.21), 4 0.13(3.26), 1 0.22(2.97), 2 

Endometrial cancer 0.20(2.55), 2 0.22(3.16), 1 0.12(1.90), 3 0.12(-0.06), 4 

Adherens junction 0.15(1.69), 2 0.21(3.38), 1 0.07(0.40), 3 0.11(-0.38), 4 

Cytokine-cytokine 

receptor interaction 

0.10(0.86), 3 0.05(-2.73), 4 0.08(1.25), 2 0.22(4.76), 1 

TGF-beta signaling 

pathway 

0.11(0.56), 4 0.15(1.83), 2 0.10(1.67), 3 0.28(4.30), 1 

a
 The rank of the pathway gene set enrichment of the compared methods according to the 

corresponding Meet/Min values’ z-scores. The bold font denotes the enriched pathways 

(z-score > 3.0). 
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Table 2. The enriched miRNA target gene sets of the responsive gene modules of TNF 

stimulated HUVECs identified by different methods. 

miRNA 
ClustEx 

tscore (z-score) 

jActiveModules 

tscore (z-score) 

GXNA 

tscore (z-score) 

FoldChange_2.0 

tscore (z-score) 

miR-216/216b 33.49(3.48), 3
 a
 24.09(2.85), 4 15.95(5.23), 1 31.43(3.62), 2 

miR-18ab 30.18(3.16), 1 24.28(3.06), 2 3.40(0.54), 4 17.73(1.33), 3 

miR-145 60.49(2.60), 3 53.82(3.01), 1 19.16(2.61), 2 53.52(2.22), 4 

miR-875-5p 14.64(2.58), 1 10.46(2.03), 3 0.00(-0.51), 4 11.53(2.12), 2 

miR-7/7ab 35.26(2.31), 1 21.11(1.08), 2 4.85(0.50), 4 24.64(1.07), 3 

miR-410 46.88(2.29), 1 34.59(1.73), 3 6.67(0.42), 4 43.50(2.10), 2 

miR-221/222 34.97(2.18), 2 29.68(2.21), 1 3.88(0.14), 4 31.48(1.99), 3 

miR-203 53.31(2.18), 2 38.25(1.47), 3 19.65(3.03), 1 40.47(1.02), 4 

miR-143 28.69(1.85), 3 21.19(1.40), 4 19.89(5.86), 1 39.81(3.84), 2 

miR-383 6.83(0.34), 3 3.03(-0.34), 4 2.34(0.71), 2 14.23(2.24), 1 

a
 The rank of the miRNA target gene set enrichment of the compared methods according to 

the corresponding tscores’ z-scores. The bold font denotes the enriched miRNA target gene 

sets (z-score > 2.0). 
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Table 3. The enriched pathways of the responsive gene modules of VEGF stimulated 

HUVECs identified by different methods. 

Pathway 

ClustEx 

Meet/Min 

(z-score) 

jActiveModules 

Meet/Min 

(z-score) 

GXNA 

Meet/Min 

(z-score) 

FoldChange_2.0 

Meet/Min 

(z-score) 

Chronic myeloid 

leukemia 

0.25(6.20), 1
 a
 0.19(5.32), 2 0.07(0.72), 4 0.19(3.67), 3 

TGF-beta signaling 

pathway 

0.23(5.88), 1 0.14(3.40), 2 0.04(-0.53), 4 0.14(2.20), 3 

Adherens junction 0.22(4.74), 1 0.10(1.73), 3 0.12(2.50), 2 0.12(1.23), 4 

Pancreatic cancer 0.19(3.99), 2 0.18(4.76), 1 0.06(0.13), 4 0.17(2.76), 3 

Neurodegenerative 

Diseases 

0.24(3.75), 1 0.12(1.57), 2 0.03(-0.61), 4 0.12(0.81), 3 

Focal adhesion 0.13(3.66), 1 0.08(1.72), 2 0.07(1.16), 4 0.11(1.71), 3 

Cell cycle 0.16(3.51), 2 0.16(5.02), 1 0.01(-1.89), 4 0.05(-1.27), 3 

Long-term potentiation 0.19(3.47), 1 0.10(1.52), 2 0.05(-0.05), 4 0.08(0.13), 3 

Wnt signaling pathway 0.14(3.24), 1 0.06(0.35), 2 0.04(-0.74), 3 0.05(-1.03), 4 

Prostate cancer 0.16(3.15), 2 0.15(3.74), 1 0.06(0.38), 4 0.10(0.72), 3 

SNARE interactions in 

vesicular transport 

0.23(3.11), 1 0.00(-1.43), 4 0.00(-1.38), 3 0.06(-0.31), 2 

Renal cell carcinoma 0.17(3.09), 1 0.09(1.44), 3 0.08(0.93), 4 0.14(1.90), 2 

Notch signaling pathway 0.21(3.04), 2 0.27(5.60), 1 0.03(-0.54), 4 0.12(0.89), 3 

Acute myeloid leukemia 0.17(2.74), 2 0.17(3.73), 1 0.06(0.15), 4 0.13(1.43), 3 

Endometrial cancer 0.17(2.47), 2 0.17(3.42), 1 0.06(0.29), 4 0.10(0.58), 3 

Dorso-ventral axis 

formation 

0.22(2.43), 2 0.22(3.11), 1 0.09(0.71), 3 0.09(0.06), 4 

Apoptosis 0.13(1.95), 2 0.04(-0.77), 3 0.03(-1.19), 4 0.19(3.63), 1 

Fc epsilon RI signaling 

pathway 

0.09(0.57), 4 0.08(0.70), 3 0.17(4.40), 1 0.15(2.23), 2 

Small cell lung cancer 0.06(-0.54), 3 0.11(2.27), 2 0.04(-0.70), 4 0.20(4.31), 1 

a
 The rank of the pathway gene set enrichment of the compared methods according to the 

corresponding Meet/Min values’ z-scores. The bold font denotes the enriched pathways 

(z-score > 3.0). 
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Table 4. The enriched miRNA target gene sets of the responsive gene modules of VEGF 

stimulated HUVECs identified by different methods. 

miRNA 
ClustEx 

tscore (z-score) 

jActiveModules 

tscore (z-score) 

GXNA 

tscore (z-score) 

FoldChange_2.0 

tscore (z-score) 

miR-132/212 67.20(4.87), 1
 a
 13.39(2.56), 3 2.24(-0.23), 4 28.71(2.78), 2 

miR-194 58.17(3.89), 1 3.51(-0.49), 4 2.41(-0.12), 3 23.27(1.79), 2 

miR-216/216b 38.29(3.29), 1 11.46(2.82), 3 7.40(2.95), 2 13.48(1.35), 4 

miR-328 22.21(3.16), 1 0.69(-0.43), 4 0.34(-0.37), 3 10.79(2.09), 2 

miR-342/342-3p 32.50(3.02), 3 12.48(3.47), 2 2.35(0.42), 4 23.72(4.06), 1 

miR-490/490-3p 22.05(2.73), 2 0.24(-0.71), 4 0.00(-0.61), 3 17.34(3.76), 1 

miR-200bc/429 103.98(2.64), 1 24.58(1.50), 3 14.12(1.57), 2 47.05(1.20), 4 

miR-125a-3p 25.22(2.31), 1 1.71(-0.31), 2 0.11(-0.69), 3 2.27(-0.83), 4 

miR-874 24.42(1.99), 2 3.03(0.11), 3 0.42(-0.60), 4 17.07(2.46), 1 

miR-204/211 55.42(1.96), 2 7.44(-0.18), 4 5.03(0.23), 3 35.96(2.34), 1 

miR-186 58.74(1.95), 2 19.21(2.22), 1 4.49(-0.02), 4 28.68(1.08), 3 

miR-377 37.24(1.26), 2 19.87(3.55), 1 1.52(-0.69), 4 17.59(0.47), 3 

miR-410 46.73(1.19), 2 22.02(2.93), 1 4.37(-0.01), 4 26.31(0.97), 3 

miR-22 30.06(0.67), 2 18.02(3.14), 1 2.88(-0.08), 4 15.22(0.24), 3 

miR-155 21.64(0.21), 3 12.02(2.11), 1 1.16(-0.64), 4 14.76(0.56), 2 

miR-374/374ab 33.48(-0.02), 3 7.79(-0.20), 4 11.42(2.31), 1 27.80(1.04), 2 

miR-495/1192 40.09(-0.05), 4 13.12(0.56), 3 14.26(2.70), 1 29.97(0.68), 2 

miR-590/590-3p 39.34(-0.66), 3 11.95(-0.10), 2 19.89(3.63), 1 20.92(-0.95), 4 

miR-183 9.12(-1.17), 4 2.57(-0.75), 3 9.89(2.92), 1 8.83(-0.57), 2 

miR-24 9.71(-1.63), 4 1.79(-1.29), 2 9.39(2.01), 1 7.61(-1.38), 3 

a
 The rank of the miRNA target gene set enrichment of the compared methods according to 

the corresponding tscores’ z-scores. The bold font denotes the enriched miRNA target gene 

sets (z-score > 2.0). 
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Additional files 

Additional file 1 

Title: the biggest responsive gene modules. 

Description: The list of the Entrez IDs of the genes in the biggest responsive gene modules 

and the differentially expressed genes of TNF/VEGF stimulated HUVECs. 

Additional file 2 

Title: the enriched KEGG pathways. 

Description: the detail results of the gene set analysis of KEGG pathways in the biggest 

responsive gene modules for TNF/VEGF stimuli. 

Additional file 3 

Title: the enriched miRNA target gene sets. 

Description: the detail results of the gene set analysis of miRNA target gene sets in the biggest 

responsive gene modules for TNF/VEGF stimuli. 

Additional file 4 

Title: the enriched GO terms. 

Description: The detail results of the gene set analysis of GO biological process terms in the 

biggest responsive gene modules for TNF/VEGF stimuli. 

Additional file 5 

Title: the hierarchical mode analysis. 
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Description: the description of the hierarchical mode analysis (HMA) algorithm and the 

corresponding results. 

Additional file 6 

Title: the performance comparison among different module identification methods. 

Description: the detail results of the performance comparison among different methods, 

including ClustEx, ClustEx_HMA, jActiveModules and GXNA. 
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